We study the capacitated $k$-facility location problem, in which we are givena set of clients with demands, a set of facilities with capacities and aconstant number $k$. It costs $f_i$ to open facility $i$, and $c_{ij}$ forfacility $i$ to serve one unit of demand from client $j$. The objective is toopen at most $k$ facilities serving all the demands and satisfying the capacityconstraints while minimizing the sum of service and opening costs. In this paper, we give the first fully polynomial time approximation scheme(FPTAS) for the single-sink (single-client) capacitated $k$-facility locationproblem. Then, we show that the capacitated $k$-facility location problem withuniform capacities is solvable in polynomial time if the number of clients isfixed by reducing it to a collection of transportation problems. Third, weanalyze the structure of extreme point solutions, and examine the efficiency ofthis structure in designing approximation algorithms for capacitated$k$-facility location problems. Finally, we extend our results to obtain animproved approximation algorithm for the capacitated facility location problemwith uniform opening cost.
展开▼
机译:我们研究了容量为$ k $的设施位置问题,在该问题中,我们给出了一组有需求的客户,一组具有容量且常数为$ k $的设施。打开设施$ i $的费用为$ f_i $,而为客户$ j $的一个需求单位提供服务的费用为$ c_ {ij} $设施$ i $。目标是开放最多$ k $的设施,以满足所有需求并满足容量限制,同时最大程度地减少服务和开放成本的总和。在本文中,我们给出了单汇入(单客户端)容量为$ k $的设施位置问题的第一个完全多项式时间近似方案(FPTAS)。然后,我们证明,如果将客户数量固定为运输问题的集合来固定客户数量,则容量均匀的$ k $设施位置问题可以在多项式时间内解决。第三,我们分析了极点解的结构,并在设计容量为$ k $的设施位置问题的近似算法时检查了这种结构的效率。最后,我们扩展了结果,以得到具有统一开放成本的能力有限的设施选址问题的改进的近似算法。
展开▼